Advanced topics in Computer Science

Jiaheng Lu
Department of Computer Science
Renmin University of China
www.jiahenglu.net
This lecture

- Parametric and field searches
 - Zones in documents
- **Scoring documents: zone weighting**
 - Index support for scoring
- Term weighting
- Vector space retrieval
Scoring and Ranking
Scoring

Thus far, our queries have all been Boolean
 - Docs either match or not
OK for expert users with precise understanding of their needs and the corpus
Not good for (the majority of) users with poor Boolean formulation of their needs
Most users don’t want to wade through 1000’s of results – cf. use of web search engines
Scoring

- We wish to return in order the documents most likely to be useful to the searcher.
- How can we rank order the docs in the corpus with respect to a query?
- Assign a score – say in \([0,1]\) for each doc \(d\) on each query \(q\).
- Begin with a perfect world – no spammers:
 - Nobody stuffing keywords into a doc to make it match queries.
Linear zone combinations

- First generation of scoring methods: use a linear combination of Booleans:
 - E.g.,

\[
\text{Score} = 0.6 \times \text{<sorting in Title>} + 0.3 \times \text{<sorting in Abstract>} + 0.05 \times \text{<sorting in Body>} + 0.05 \times \text{<sorting in Boldface>}
\]

- Each expression such as \text{<sorting in Title>} takes on a value in \{0,1\}.
- Then the overall score is in \[0,1\].
Index support for zone combinations

- In the simplest version we have a separate inverted index for each zone
- Variant: have a single index with a separate dictionary entry for each term and zone
- E.g.,

```
bill.author  1 -> 2
bill.title   3 -> 5 -> 8
bill.body    1 -> 2 -> 5 -> 9
```

Of course, compress zone names like author/title/body.
Zone combinations index

- The above scheme is still wasteful: each term is potentially replicated for each zone
- In a slightly better scheme, we encode the zone in the postings:

 \[
 \text{bill} \quad 1.\text{author, 1.body} \rightarrow 2.\text{author, 2.body} \rightarrow 3.\text{title}
 \]

 As before, the zone names get compressed.

- At query time, accumulate contributions to the total score of a document from the various postings, e.g.,
Score accumulation

- As we walk the postings for the query **bill OR rights**, we accumulate scores for each doc in a linear merge as before.
- Note: we get both **bill** and **rights** in the **Title** field of doc 3, but score it no higher.
- Should we give more weight to more hits?
Where do these weights come from?

- **Machine learned scoring**

- **Given**
 - A test corpus
 - A suite of *test queries*
 - A set of *relevance judgments*

- Learn a set of weights such that relevance judgments matched
Simple example

- Each doc has two zones, **Title** and **Body**
- For a chosen \(w \in [0,1] \), score for doc \(d \) on query \(q \) where:

\[
score(d, q) = w \cdot s_T(d, q) + (1 - w)s_B(d, q)
\]

where:

- \(s_T(d, q) \in \{0,1\} \) is a Boolean denoting whether \(q \) matches the **Title** and
- \(s_B(d, q) \in \{0,1\} \) is a Boolean denoting whether \(q \) matches the **Body**
Where do these weights come from?

- **Machine learned scoring**
- **Given**
 - A test corpus
 - A suite of test queries
 - A set of relevance judgments
- **Learn a set of weights such that relevance judgments matched**
Learning w from training examples

We are given *training examples*, each of which is a triple: DocID d, Query q and Judgment Relevant/Non.

From these, we will learn the best value of w.
How?

- For each example Φ_t, we can compute the score based on z
 $$\text{score}(d_t, q_t) = w \cdot s_T(d_t, q_t) + (1 - w) s_B(d_t, q_t).$$

- We quantify Relevant as 1 and Non-relevant as 0
 - Would like the choice of w to be such that the computed scores are as close to these 1/0 judgments as possible
 - Denote by $r(d_t, q_t)$ the judgment for Φ_t

$$\sum_{\Phi_t} (r(d_t, q_t) - \text{score}(d_t, q_t))^2$$
Scoring: density-based

- Thus far: **position** and **overlap** of terms in a doc – title, author etc.
- Obvious next: idea if a document talks about a topic *more*, then it is a better match.
- This applies even when we only have a single query term.
- Document relevant if it has many occurrences of the term(s)
- This leads to the idea of **term weighting**.
Term frequency and weighting
Term frequency vectors

- Consider the number of occurrences of a term t in a document d, denoted $tf_{t,d}$
- Document is a vector: a column below
- *Bag of words* model

<table>
<thead>
<tr>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>157</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brutus</td>
<td>4</td>
<td>157</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>232</td>
<td>227</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>worser</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Scores from term frequencies

- Given a free-text query q, define

 $$\text{Score}(q,d) = \sum_{t \in q} tf_{t,d}$$

 Simply add up the term frequencies of all query terms in the document

 This assigns a score to each document; now rank-order documents by this score.
Bag of words view of a doc

- Thus the doc
 - *John is quicker than Mary.*
 - *Mary is quicker than John.*

Which of the indexes discussed so far distinguish these two docs?
Adding frequencies

- Consider query *ides of march*
 - *Julius Caesar* has 5 occurrences of *ides*
 - No other play has *ides*
 - *march* occurs in over a dozen
 - All the plays contain *of*

- By this scoring measure, the top-scoring play is likely to be the one with the most *of* s
Digression: terminology

- **WARNING**: In a lot of IR literature, “frequency” is used to mean “count”
 - Thus *term frequency* in IR literature is used to mean *number of occurrences* in a doc
 - *Not* divided by document length (which would actually make it a frequency)

- We will conform to this misnomer
 - In saying *term frequency* we mean the *number of occurrences* of a term in a document.
Term frequency $\text{tf}_{t,d}$

- Long docs are favored because they’re more likely to contain query terms.
- Can fix this to some extent by normalizing for document length.
- But is raw $\text{tf}_{t,d}$ the right measure?
Weighting term frequency: \(tf \)

- What is the relative importance of
 - 0 vs. 1 occurrence of a term in a doc
 - 1 vs. 2 occurrences
 - 2 vs. 3 occurrences …

- Unclear: while it seems that more is better, a lot isn’t proportionally better than a few
 - Can just use raw \(tf \)
Weighting should depend on the term overall

- Which of these tells you more about a doc?
 - 10 occurrences of *hernia*?
 - 10 occurrences of *the*?

- Would like to attenuate the weights of *common terms*
 - But what is “common”?

- Suggestion: look at collection frequency (*cf*)
 - The total number of occurrences of the term in the entire collection of documents
Document frequency

- But document frequency (df) may be better:
- $df = \text{number of docs in the corpus containing the term}$

<table>
<thead>
<tr>
<th>Word</th>
<th>cf</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>try</td>
<td>10422</td>
<td>8760</td>
</tr>
<tr>
<td>insurance</td>
<td>10440</td>
<td>3997</td>
</tr>
</tbody>
</table>

- Document/collection frequency weighting is only possible in known (static) collection.
- So how do we make use of df?
- Logarithms are base 10

<table>
<thead>
<tr>
<th>term</th>
<th>df_t</th>
<th>idf_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>18,165</td>
<td>1.65</td>
</tr>
<tr>
<td>auto</td>
<td>6723</td>
<td>2.08</td>
</tr>
<tr>
<td>insurance</td>
<td>19,241</td>
<td>1.62</td>
</tr>
<tr>
<td>best</td>
<td>25,235</td>
<td>1.5</td>
</tr>
</tbody>
</table>
tf x idf term weights

- **tf x idf measure combines:**
 - term frequency (tf)
 - or wf, some measure of term density in a doc
 - inverse document frequency (idf)
 - measure of informativeness of a term: its rarity across the whole corpus
 - could just be raw count of number of documents the term occurs in ($idf_t = 1/df_t$)
 - but by far the most commonly used version is:
 $$ idf_t = \log\left(\frac{N}{df_t}\right) $$
 - See Papineni, NAACL 2, 2002 for theoretical justification
Summary: tf x idf (or tf.idf)

- Assign a tf.idf weight to each term i in each document d

$$w_{t,d} = tf_{t,d} \times \log\left(\frac{N}{df_t}\right)$$

- Increases with the number of occurrences within a doc
- Increases with the rarity of the term across the whole corpus

What is the wt of a term that occurs in all of the docs?
Real-valued term vectors

- Still **Bag of words** model
- Each is a vector
 - Here log-scaled *tf.idf*

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>13.1</td>
<td>11.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Brutus</td>
<td>3.0</td>
<td>8.3</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Caesar</td>
<td>2.3</td>
<td>2.3</td>
<td>0.0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0.0</td>
<td>11.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>17.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>mercy</td>
<td>0.5</td>
<td>0.0</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>worser</td>
<td>1.2</td>
<td>0.0</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Note can be >1!
Documents as vectors

- Each doc j can now be viewed as a vector of $wf \times idf$ values, one component for each term.
- So we have a vector space:
 - terms are axes
 - docs live in this space
 - even with stemming, may have 20,000+ dimensions
Why turn docs into vectors?

- First application: Query-by-example
 - Given a doc D, find others “like” it.
- Now that D is a vector, find vectors (docs) “near” it.
Intuition

Postulate: Documents that are “close together” in the vector space talk about the same things.
The vector space model

Freetext query as vector:

- We regard freetext query as short document
- We return the documents ranked by the closeness of their vectors to the query vector.
Cosine similarity

- Distance between vectors d_1 and d_2 captured by the cosine of the angle x between them.
- Note – this is *similarity*, not distance
 - No triangle inequality for similarity.
Cosine similarity

- A vector can be *normalized* (given a length of 1) by dividing each of its components by its length – here we use the L_2 norm

$$\| \mathbf{x} \|_2 = \sqrt{\sum_{i} x_i^2}$$

- This maps vectors onto the unit sphere:

- Then,

$$| \tilde{d}_j | = \sqrt{\sum_{i=1}^{M} w_{i,j}} = 1$$

- Longer documents don’t get more weight
Cosine similarity

\[\text{sim}(d_j, d_k) = \frac{\vec{d}_j \cdot \vec{d}_k}{|\vec{d}_j| |\vec{d}_k|} = \frac{\sum_{i=1}^{M} w_{i,j} w_{i,k}}{\sqrt{\sum_{i=1}^{M} w_{i,j}^2} \sqrt{\sum_{i=1}^{M} w_{i,k}^2}} \]

- Cosine of angle between two vectors
- The denominator involves the lengths of the vectors.

Normalization
Normalized vectors

- For normalized vectors, the cosine is simply the dot product:

\[
\cos(\vec{d}_j, \vec{d}_k) = \vec{d}_j \cdot \vec{d}_k
\]
Example

- Docs: Austen's *Sense and Sensibility*, *Pride and Prejudice*; Bronte's *Wuthering Heights*

<table>
<thead>
<tr>
<th></th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>115</td>
<td>58</td>
<td>20</td>
</tr>
<tr>
<td>jealous</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>gossip</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>0.996</td>
<td>0.993</td>
<td>0.847</td>
</tr>
<tr>
<td>jealous</td>
<td>0.087</td>
<td>0.120</td>
<td>0.466</td>
</tr>
<tr>
<td>gossip</td>
<td>0.017</td>
<td>0.000</td>
<td>0.254</td>
</tr>
</tbody>
</table>

- \(\cos(SAS, \text{PAP}) = 0.996 \times 0.993 + 0.087 \times 0.120 + 0.017 \times 0.0 = 0.999 \)
- \(\cos(SAS, \text{WH}) = 0.996 \times 0.847 + 0.087 \times 0.466 + 0.017 \times 0.254 = 0.929 \)