Advanced topics in Computer Science

Jiaheng Lu
Department of Computer Science
Renmin University of China
www.jiahenglu.net
Course purpose

- Teach in English in most time

- Introduce senior undergraduate students to some advanced topics in computer science
Course contents

- Introduction to information retrieval
- Approximate string processing
- XML data management
- Cloud computing
Course contents

- Introduction to information retrieval
- 信息检索和搜索引擎技术

- Basic indexing and tokenization
- “Tolerant” retrieval
- Index construction
- Dictionary and Postings compression
Course contents

- XML data management

- XML 数据管理

- XML，XPath，XQuery
- XSLT，XML Schema
- XML query processing
- XML database
Course contents

- String processing and matching
- 字符串处理技术
- Exact string matching and approximate string matching
Course contents

• Cloud computing

• 云计算技术

• Introduction to cloud computing
• Cloud-based service
• Cloud-based data management
Course grading

- Presentation in English/Chinese only 40%
- Paper in English only 40%
- In-class presence and quiz 20%
Any question and any comments?
Evaluating search engines
search engine

- Have you any comments about search engine?

 - Baidu
 - Google
 - Sogou
 - Yahoo
Measures for a search engine

- How fast does it index
 - Number of documents/hour
 - (Average document size)
- How fast does it search
 - Latency as a function of index size
- Expressiveness of query language
 - Speed on complex queries
Measures for a search engine

- All of the preceding criteria are *measurable*: we can quantify speed/size; we can make expressiveness precise

- The key measure: user happiness
 - What is this?
 - Speed of response/size of index are factors
 - But blindingly fast, useless answers won’t make a user happy

- Need a way of quantifying user happiness
Measuring user happiness

- **Issue**: who is the user we are trying to make happy?
 - Depends on the setting

- **Web engine**: user finds what they want and return to the engine
 - Can measure rate of return users

- **eCommerce site**: user finds what they want and make a purchase
 - Is it the end-user, or the eCommerce site, whose happiness we measure?
 - Measure time to purchase, or fraction of searchers who become buyers?
Measuring user happiness

- **Enterprise** (company/govt/academic): Care about “user productivity”
 - How much time do my users save when looking for information?
 - Many other criteria having to do with breadth of access, secure access … more later
Happiness: elusive to measure

- But how do you measure relevance?
 - Will detail a methodology here, then examine its issues

- Requires 3 elements:
 1. A benchmark document collection
 2. A benchmark suite of queries
 3. A binary assessment of either Relevant or Irrelevant for each query-doc pair
Evaluating an IR system

- Note: information need is translated into a query
- Relevance is assessed relative to the information need not the query
- E.g., Information need: I'm looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine.
- Query: wine red white heart attack effective
Standard relevance benchmarks

- TREC - National Institute of Standards and Testing (NIST) has run large IR benchmark for many years
- Reuters and other benchmark doc collections used
- “Retrieval tasks” specified
 - sometimes as queries
- Human experts mark, for each query and for each doc, Relevant or Irrelevant
 - or at least for subset of docs that some system returned for that query
Precision and Recall

- **Precision**: fraction of retrieved docs that are relevant = \(P(\text{relevant} | \text{retrieved}) \)
- **Recall**: fraction of relevant docs that are retrieved = \(P(\text{retrieved} | \text{relevant}) \)

<table>
<thead>
<tr>
<th></th>
<th>Relevant</th>
<th>Not Relevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieved</td>
<td>(\text{tp})</td>
<td>(\text{fp})</td>
</tr>
<tr>
<td>Not Retrieved</td>
<td>(\text{fn})</td>
<td>(\text{tn})</td>
</tr>
</tbody>
</table>

- Precision \(P = \frac{\text{tp}}{\text{tp} + \text{fp}} \)
- Recall \(R = \frac{\text{tp}}{\text{tp} + \text{fn}} \)
Accuracy – a different measure

- Given a query an engine classifies each doc as “Relevant” or “Irrelevant”.
- Accuracy of an engine: the fraction of these classifications that is correct.
Why not just use accuracy?

- How to build a 99.9999% accurate search engine on a low budget....

- People doing information retrieval want to find something and have a certain tolerance for junk.
Precision/Recall

- Can get high recall (but low precision) by retrieving all docs for all queries!
- Recall is a non-decreasing function of the number of docs retrieved
 - Precision usually decreases (in a good system)
Difficulties in using precision/recall

- Should average over large corpus/query ensembles
- Need human relevance assessments
 - People aren’t reliable assessors
- Assessments have to be binary
 - Nuanced assessments?
- Heavily skewed by corpus/authorship
 - Results may not translate from one domain to another
A combined measure: F

- Combined measure that assesses this tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1-\alpha) \frac{1}{R}} = \frac{\beta^2 + 1}{\beta^2 P + R}$$

- People usually use balanced F_1 measure
 - i.e., with $\beta = 1$ or $\alpha = \frac{1}{2}$
Any question and any comments?
Precision and Recall

- **Precision**: fraction of retrieved docs that are relevant = \(P(\text{relevant}|\text{retrieved}) \)
- **Recall**: fraction of relevant docs that are retrieved = \(P(\text{retrieved}|\text{relevant}) \)

<table>
<thead>
<tr>
<th></th>
<th>Relevant</th>
<th>Not Relevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieved</td>
<td>(tp)</td>
<td>(fp)</td>
</tr>
<tr>
<td>Not Retrieved</td>
<td>(fn)</td>
<td>(tn)</td>
</tr>
</tbody>
</table>

- Precision \(P = \frac{tp}{tp + fp} \)
- Recall \(R = \frac{tp}{tp + fn} \)
Precision and Recall Quiz

<table>
<thead>
<tr>
<th></th>
<th>Relevant</th>
<th>Not Relevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieved</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Not Retrieved</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

- Precision $P = \frac{tp}{tp + fp} = \frac{10}{13} = 77\%$
- Recall $R = \frac{tp}{tp + fn} = \frac{10}{15} = 67\%$